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ABSTRACT DI
The receptivity problem for G6rtler vortices induced by wall roughness is investigated.

The roughness is modelled by small amplitude perturbations to the curved wall over which
the flow takes place. The amplitude of these perturbations is taken to be sufficiently small for
the induced Gbrtler vortices to be described by linear theory. The roughness is assumed to
vary in the spanwise direction on the boundary layer lengthscale, whilst in the flow direction
the corresponding variation is on the lengthscale over which the wall curvature varies. In fact
the latter condition can be relaxed to allow for a faster streamwise roughness variation so long
as the variation does not become as fast as that in the spanwise direction. The function which
describes the roughness is assumed to be such that its spanwise and streamwise dependences
can be separated; this enables us to make progress by taking Fourier or Laplace transforms
where appropriate. The cases of isolated and distributed roughness elements are investigated
and the coupling coefficient which relates the amplitude of the forcing and the induced
vortex amplitude is found asymptotically in the small wavelength limit. It is shown that
this coefficient is exponentially small in the latter limit so that it is unlikely that this mode
can be stimulated directly by wall roughness. The situation at 0(1) wavelengths is quite
different and this is investigated numerically for different forcing functions. It is found that
an isolated roughness element induces a vortex field which grows within a wedge at a finite
distance downstream of the element. However, immediately downstream of the obstacle the
disturbed flow produced by the element decays in amplitude. The receptivity problem at
larger G~rtler numbers appropriate to relatively large wall curvature is discussed in detail.
It is found that the fastest growing linear mode of the G6rtler instability equations has
wavenumber proportional to the one fifth power of the G~rtler number. The mode can be
related to both inviscid disturbances and the disturbances appropriate to the right hand
branch of neutral curve for G6rtler vortices. The coupling co-efficient between this, the
fastest growing vortex, and the forcing function is found in closed form.

'Research was supported by the National Aeronautics and Space Administration under NASA Contract
No. NAS1-18605 while the authors were in residence at the Institute for Computer Applications in Science
and Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23665.



1. Introduction

Our concern is with the mechanism by which Gbrtler vortices in incompressible bound-

ary layers are stimulated by wall roughness elements. We shall consider the cases of isolated

and distributed roughness over the whole range of unstable Gbrtler numbers. In a recent

paper, Hall (1990), the G6rtler receptivity problem for free-stream disturbances was dis-

cussed; the present paper completes the discussion of the linear receptivity problem for

Gbrtler vortices. However, some of the cases considered in this paper can be generalized

to take account of finite amplitude effects but those situations will not be discussed here.

Before discussing the receptivity problem in more detail we shall remind the reader of the

main results of linear stability theory applied to boundary layers on curved walls. The

paper mentioned above, Hall (1990), is for the most part a review of the linear and non-

linear stages of G6rtler vortices so the reader is referred to that paper for a more detailed

discussion of the various stages of G6rtler vortex growth.

The main feature of G6rtler vortices which makes them behave in a quite different

manner than for example Tollmien-Schlichting waves or Rayleigh waves is that they are

almost always dominated by nonparallel effects. This means that, at 0(1) wavenumbers

and G6rtler numbers, the concept of a unique neutral curve is not tenable; the position

where a given vortex begins to grow is a function of its upstream history. Mathematically

this property manifests itself through the parabolic nature of the disturbance equations for

G6rtler vortices. Thus Hall (1983) showed that at order one values of the G6rtler number

and wavenumber a small amplitude G6rtler vortex is described by a parabolic system of

equations which in general must be solved numerically for each vortex wavenumber. The

neutral curve corresponding to any fixed initial disturbance can be computed by marching

the disturbance equations downstream, but it is a function of the initial disturbance.

The only exception to the situation discussed above is that when the vortex has a

wavelength small compared to the boundary layer thickness. In this regime the vortex

'feels' the local structure of the boundary layer and is therefore able to develop in a quasi-

parallel manner. Hall (1982a) showed that it is then possible to define a unique right hand

branch of the neutral curve which, at zeroth order, has the G6rtler number proportional

to the fourth power of the vortex wavenumber.

It had been assumed by authors previous to Hall (1982a) that Gortler vortices could

be described in a self-consistent manner by making the parallel flow approximation and

possibly appealing to, for example, the method of multiple scales to give the approximation
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some justification, see for example Floryan and Saric (1979). However, it is now accepted

that no such justification can be made and that, if one is interested in the evolution of

vortices with 0(1) wavelength in a boundary layer, the governing equations are indeed the

parabolic equations solved by Hall (1983), thus no reduction to a set of ordinary differential

equations is possible.

In the nonlinear regime the nonparallel characteristics of G6rtler vortices are main-

tained and the disturbance equations must be solved numerically, Hall (1988). However

in the small wavelength nonlinear regime much analytical progress can be made and it

is possible to describe vortices so large that they have an 0(1) effect on the mean flow.

Indeed in that regime it is found that the mean flow is actually driven by the vortices over

most of the flow and adjusts itself so as to make all small wavelength vortices neutrally

stable, see Hall and Lakin (1988). At even larger amplitudes the strongly nonlinear states

described by Hall and Lakin (1988) become unstable to wavy vortex modes as discussed

by Hall and Seddougui (1989).

The above description of G6rtler vortex growth in the linear and nonlinear regimes

also applies to compressible flows it the Mach number is not too large, Hall and Malik

(1989), Wadey (1990). In the hypersonic limit Hall and Fu (1989a,b) showed that the

linear development of G6rtler vortices becomes much simpler. In particular, for either a

Sutherland or Chapman law fluid, the first term in the expansion of the neutral G6rtler

number in terms of Mach number and wavenumber is independent of nonparallel effects.

That property remains true at higher order for a Chapman Law fluid but, for a Sutherland

law fluid, nonparallel effects dominate at second order.

The results discussed above are broadly in agreement with experimental observations,

certainly the nonparallel incompressible calculations are much more in line with experi-

mental observations than are the parallel flow calculations. Nevertheless the nonparallel

theory causes philosophical problems for the transition prediction industry, the reason why

this should be the case is obvious. Thus in, for example, the e' rule for transition predic-

tion it is necessary to know the unique growth rate for a vortex at a given downstream

position, but the main result of the nonparallel work is that no such quantity exists. In

the absence of a unique growth rate the method cannot be used so, in some cases, the

outcome of the nonparallel work has been ignored and parallel flow theory used to predict

the required unique growth rate. In fact an unstable G6rtler vortex undergoes most of its

linear growth at high wavenumbers so the latter type of calculation is not totally flawed.
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The point is, of course, that if the concept of a unique growth rate is tenable only at high

wavenumbers, and as the growth rate can be found in a simple asymptotic manner there,

the high wavenumber theory should be used to predict the growth rate there.

The motivation for much of the research in recent years on Gbrtler vortices has come

from the Laminar Flow Control program at NASA Langley. In particular a type of wing

cross-section developed there, see Harvey and Pride (1982), has significant regions of cur-

vature on its underside. These concave sections are required to control flow separation

but are possible causes of transition via the G5rtler vortex mechanism. A question of

some importance in the flow around this type of wing is to determine, given that curva-

ture is required because of other considerations, how the curvature should be distributed

in order to minimise the likelihood of transition induced by Gbrtler vortics. A matter

of equal importance is that of whether changes to the curvature distribution made to

suppress Gbrtler vortices will enhance the likelihood of transition being caused by other

mechanisms. Further motivation to study compressible G6rtler vortices comes from the

necessity for engineers to understand the flow around turbine blades or the flow in engine

inlets. In fact the stability problem associated with the latter flow is made much more

difficult because of shock waves present in the flowfield, as yet no progress has been made

with the Gbrtler vortex problem in the presence of shocks though some progress has been

made with understanding the effect of shocks on travelling wave instabilities, Cowley and

Hall (1990).

In the practical situations where the G6rtler mechanism is thought to be important it

remains an open question if free-stream disturbances or wall roughness will cause the initial

vortex growth. Without doubt in both the wind-tunnel and flight situations we can expect

that streamwise vorticity impinging on the leading edge or generated by imperfections on

the wing surface will be present. The main aim of the present paper is to determine the

efficiency of surface imperfections in generating vortices. This will be done over the whole

range of G6rtler numbers, this means that we will have to discuss the spatial inviscid

instability problem for G6rtler vortices, apparently this has not been done previously.

We shall see that the investigations of Hall (1982a) at high G6rtler numbers over-

looked a wavenumber regime where the fastest growing spatial G6rtler vortices occurs. A

significant property of these modes is that they are wall modes, actually they are localized

in an asymptotically thin layer at the wall. This distinguishes them from the neutral form

of the small wavelength modes of Hall (1982a) which are trapped in a thin asymptotically
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small layer in the interior of the flow. The new modes which we describe are viscous but

they connect in a simple way to the inviscid spatial modes in one limit, and with the neu-

tral modes of Hall (1982a) in another limit. Because these most unstable modes choose to

locate themselves at the wall, it turns out that they couple strongly with any forcing due

to a surface imperfection. Our calculations suggest that the stimulation of these modes

will be the most likely consequence of a quite general surface imperfection, therefore they

are likely to be the source of transition in curved flows at high G6rtler numbers. However,

in addition to these modes, we shall discuss all other possible types of induced longitudi-

nal vortex scalings. Our discussion applies to walls with small amplitude imperfections of

somewhat arbitrary character but we concentrate mostly on the case when the perturba-

tion is localized in the spanwise direction. For such walls we find that the vortices grow in

a wedge shaped region downstream of the obstacle, though in the immediate downstream

vicinity of the obstacle the disturbance decays.

The procedure adopted in the rest of this paper is as follows: in §2 we formulate

the receptivity problem for G6rtler vortices induced by surface imperfections. In §3 we

consider the limiting form of this receptivity problem appropriate to the small wavelength

limit; in this limit we are able to derive an asymptotic form for the coupling co-efficient

between the forcing and the induced vortex field. In §4 the 0(1) w-tvelength problem is

investigated; here we allow the forcing to vary on a lengthscale comparable to, and shorter

than, the boundary layer scale in the flow direction. In §5 we isolate the fastest growing

mode of the G6rtler stability equations. In §6 the receptivity problem for this mode is

discussed; finally in §7 we draw some conclusions.

2. Formulation of the forced G~rtler vortex problem.

We consider the flow of a viscous fluid over a wall of variable curvature. We assume

that L is a typical lengthscale over which the curvature changes. If U, is a typical flow

velocity a great distance from the wall, and v is the kinematic viscosity, we define a

Reynolds number, Re, by
Re- =~ (2.1)

and we suppose that with respect to Cartesian axes x*, y*, z* the wall is def ned by

y*= L{Re- g(x*/L) + ARe-2f(x*/L, Re2z*/L)}. (2.2)
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where A is a small constant.

We define variables (x, y, z) by

(xYZ) = (x"Re'-y,Re2z*) (2.3)
= L

and a corresponding velocity vector by

(u+,v+,w+) = (u"Refv*Reiw°) (2.4)

U.

We restrict our attention to the limit Re -- oo and write

p+= p(x) + ARe- ,(x, y, z) + 0(A 2) (2.5a, b)

(u +, v+ , w+) = (i, V, 0) + A (i, ), tI) + 0(A 2 )

where p+ is the pressure, scaled on pU2 , with p the fluid density. Moreover, n and V

depend only on x and y whilst u, v, w depend on all three dimensionless co-ordinates. We

first take the limit A -- 0 with Re held fixed and equate terms of order A*, A in the

Navier Stokes equations. In the resulting systems for (9,V,0,p) and (ii, D, tD ,) we take

the further limit Re --* oo to obtain, at the zeroth order level of approximation in Re,

ft . + (2 .6 )

fula+V 1 . + +~ 1,

and
fi. + V, + 17, =0.

aii, + VfIy + fif. + ifu = A2fi, (2.7)

fzi' + Viy + fiV, + b1V, = - + ± A 23,
uth + Viy = -,+ A217.

Here the operator A2 is defined by

A2-2+ y 2,

and by writing down a Taylor series expansion for the no-slip condition about y = g we

obtain the conditions

(X), 
(2.8a, b)

i u) -f f, VY =- , = 0, y = OX).



Meanwhile for large values of y we require that

U -. u. (x), y -.oo9 -- U, X), 00(2.9 a, b)
(i, D, ) -+O, y oo,

where u,(x) is the dimensionless free-stream velocity; in this paper we shall confine our

attention to Blasius flow so that u. = 1. In order to bring out more clearly the destabilizing

effect of wall curvature we make the Prandtl transformation

y - y - 9,

V V- V + g'U.

D5 -i + g'ii.

whilst all other variables remain unchanged. In this case (2.6) - (2.9) become

fl. + Vy = 0,

Uf1u + VUy = -P. + UY, (2.10)

==0, y=0,

f -- u.(X), Y -- oo.

and
f. + by + 7'= 0,

vii. + Viy + v11y + fi, =A2 ,

ufb, + vf5y + fiv, + 15y + GX(x)Uti = -P + A 2V, (2.11)

ut. + VaVy = - . + A 2w,

fi = -f, = 0, b = 0 y= 0,

fi, , Wb -- + 0, y -- o( .

d2g

In (2.11) we have replaced 2x 2 by GX(x) where G, X will be referred to as the G6rtler

number and wall curvature respectively. Thus (2.10) must first be solved for the basic

state whilst (2.11) then determines the forced vortex flow. We further note that the wall

condition on v could be modified so as to determine, for example, the effect of wall suction

on the generation of vortices. Finally in this section we assume that f may be written as

f = f(x)4(z)
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so that (2.11) can be Fourier transformed in z to give

U, + vY + ikw = 0,

flu, + Vuy + vily + uu, = UY - k2u,

Iv " + DvI + vV , + u %. + GX lU = -p l + vIM - k2v,

11w, + Vw, = -ikp + w, - k2w,

u=q(k)F(x), v=O, w=0, y=O,

U, V, W -+ 0 y- 00.

Here k is the transform variable, -q is the transform of 4, u is the transform of fi, etc., and

we have defined F(x) = a, (x, O)1(x). In the following sections we discuss the solutions of

(2.12) in a variety of situations; for convenience we note that if p and w are eliminated

from the disturbance equations we obtain

{U,,,, + k 4 + k2 V,}v + V,.ut( + {%,,y + k 2v + k2 XGl}u

02 a+ {U,, - Ub-- + k-} + 2.{1,, + 13 .--V}u, (2.12g)

+ v,,, - v,,, - {V, + 2k 2 1v,,, + {., + k 2V v, = 0.

Thus the problem for the forced vortex flow can be reduced to the solution of (2.12a,g)

subject to the boundary conditions (2.12e,f). At finite values of G the solution of this

system can only be found by numerical integration. However it is first instructive to

consider the receptivity problem for vortices with a wavelength appropriate to the right

hand branch of the neutral curve; the results we obtain are invaluable in interpreting the

calculations at 0(1) wavelength which will be discussed in S4.

3. The small wavelength limit.

We now consider the asymptotic limit k --+ oo in which case the unforced problem

becomes unstable in a layer of thickness k- I located in a position which maximises the

downstream growth of the vortex. From Hall (1982a,b) we know that small wavelength

vortices develop in a nonparallel manner in a k- 1 neighbourhood of the neutral location.

Thus, if the G6rtler number G is written as

G=Gk 4 , (3.1)

7



then suppose that, using the approach of Hall (1982a), we find that correct to zeroth order

in k- 1 the neutral location is given by x = T. We then write

X = k(x - T). (3.2)

We will allow the wall forcing function F(x) to be slightly more general than that assumed

in §2; more precisely, we now allow F to vary on the X lengthscale so that

F(x) = '(X). (3.3)

We will now show how the wall roughness induces a longitudinal vortex structure within

a k- 1 neighbourhood of x = 2; notice that if we wish to recover the case with F varying

on x lengthscale we simply need to replace .F(X) by a constant in the following analysis.

It follows from (2.12) that viscous effects in the normal and spanwise directions are

comparable when -L - 0(k); this is achieved in the bulk of the flow using a WKB type of

expansion. However, as discussed by Hall (1982a), this expansion fails near the wall and

where Uu. has a local maximum. We suppose that this maximum occurs at y = y so that

the forced flow must have a region II of depth k- centred on y = 9. Above and below

this region are two further regions, I and III, where the WKB structure is appropriate.

At the bottom of region III the WKB structure will be seen to break down; in fact the

six different WKB exponents collapse into just two distinct values as y --+ 0. Thus an

adjustment or transition layer is needed as y --+ 0; we shall see below that this is of depth

k- and we refer to this region as IV. Finally, where y = O(k- 1), the viscous derivatives

in the y direction again become important so that a wall layer, V, of depth k- 1 is needed.

The different regions are illustrated in Figure (3.1).

The wall layer solution

Here we define by

= ky

and the wall conditions suggest that u and v are 0(1) here. In fact it can be seen from

(2.12a) that if u is 0(1) in V then v must be of order k; we are therefore led to the expansion

(3.4a, 
b)

v = 8



and we expand the basic velocity component fi in this layer as

-a = Ak-1 + (3.5)

where A(T) is the wall shear at x = 2. A similar expansion can be written down for V

but is not needed here. If we substitute the above expansions into (2.12) we find that the

zeroth order approximation to that system yields

d2 11U=0,d 2

d 2 (3.6)
- } 2o = -XGA uo,

uo=F,VOvoc=0, .=0.

The solution of (3.6) which does not grow exponentially with is then seen to be

uo = .F(X)e - ,vO = -xd 24- W + 3 21. (3.7)

so that when - oo (3.7) gives

u '.F(x)e - k e +..., v - (ykL) 3e - P +... (3.8)
24

Solution in IV

We can see from (3.8) that the next region, IV, is of depth k- 4 so we put

7- k= y (3.9)

and the appropriate expansions of u and v are then

u = Uo(7)e - k' +...

v = k Vo(i,)e-'v +

and after substituting into (2.12) and eliminating Vo(rq) from the resulting zeroth order

equations we find
d 3 Uo XGA 2 7 =

d77 3  8 (3.10)
U6(0) = v = 0, U(0) = '(x).
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The solution of this system is

UO = FT (07) (3.11)

where a = [] ' and IQ satisfies

-3  OP = 0, q/(0) = 1, '(o) = 1"(o) = 0.

For large values of ( the three possible forms for %P have

respectively so that %P grows exponentially when C - oo. In fact the asymptotic form of

%P for large ( is found to be

'P x -j-- ,...
where w is a constant given to three decimal places by w = 0.285.

It follows that for large values of 77 we can write u as

U w2lF(X)e- "' +3/ 4n[ +[] (u~s kxf xV +.- (3.12)

In fact the two other (complex) exponentially decaying solutions match onto exponentially

decaying WKB solutions in III which do not have a turning point layer at y = P. Thus it

is sufficient for us to consider the matching of (3.12) with the WKB solution which does

indeed have a turning point layer at y = y; it is, of course, the part of the velocity field

which drives the potentially unstable vortex velocity field.

The WKB solution in III

In this region we seek asymptotic solutions for u and v which take the form

(u, v) = ek f { e(')d {(uo, k 2VO) +..}. (3.13)

Here 0(y) is the WKB phase function and the relative scalings of u and v follow from the

requirement that {02 + 02}U ,. V.U" in III; the latter balance is the crucial one shown

by Hall (1982a) to be necessary for small wavelength vortices. It is a routine matter to

substitute for (u, v) from (3.13) into (2.12) and solve for (uo, vo). In fact at zeroth order
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uO and vo are not determined but the consistency of a pair of linear equations for these

functions yields the phase equation

(02 - 1)3 = - ,

where U(-v) = t(Ty). In order that u and v should decay with y we must reject values of

0 with positive real part. The three acceptable solutions are then found to be

(3.14a, b)

where the branch of the square root in the right hand half plane is to be taken. The first

of these roots vanishes where 1 = GX= and this necessitates the existence of the turning

point layer II. The complex roots lead to no such turning point layer so that the part of

the WKB solution appropriate to these roots is valid in 0 < y < oo. In fact these solutions

match directly onto the part of the solution in III appropriate to the complex valued large

solutions of (3.12). Thus we neglect this part of the WKB solution since it does not

interact in any way with the induced vortex instability which we will calculate in II. We

therefore write u in III as

u = e {fu0 + .} + E.D.

where E.D. denotes the other WKB solutions not having a turning point layer at y = p.

At higher order the amplitude function uo(X,y) is found to satisfy

- [92 - 1]GX E (y)uo - 2dGaf% ! 9uo - 2dg2 U O(x
(3.15)

+ 69Gdfl uo, + 30'(02 - 1)2(1 - 50 2 )u0 - 409Xd=,, uo = 0.

Here

€ (y) = X]

and D = v(2,y). Thus u0 satisfies a partial differential equation with coefficients dependent

on both X and y. Non-parallel effects lead directly to the term proportional to X in (3.15).

Furthermore in order to match with the solution in IV we require

u0 , k 1.[x A2] x) y - 0. (3.16)
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In order to simplify the solution of the equations for uO we write

IUO 0' ,U 10- 11- 1 expfl: (x, y)}, (3.17)uo I (3[,.17A2])

where

Myo. + fody+X2± ' o ) dy]dy + oX N ) dy  (3.18)

with
-= §-{ [niu.,x]Y -, (3.19)

and

N(y) = U){(02 - 1)(x ), = + 4U2= XYV} (3.20)

We note at this stage that N(9) = 0 so that the integral fo y-dy converges when = 9,

even though 0(9) = 0. After writing uo in the forni (3.17) we find that Uo(x,y) satisfies

OUo U DUO 0

Dy 30 OX (3.21)

Uo = ex- xF(X), y = 0.

This system is most easily solved by taking the Laplace transform of U0 . However before

taking this transform it is convenient to suppose that Y7(X) - 0 for X < X' and that

u = v = 0 for X < X*. We now make the change of variable X = X - X" and let U0(s, y)

be the transform of U0 . We then find that

(T0 =fsc
o  t (3.22)

where

f(s) =J -S - (x+x').F(2 + X°)dX. (3.23)
0

We must now find the limiting form of the WKB solution when y -- 9; this will provide

us with the required matching condition which we need in order to find the forced motion
in II.

Firstly we note that when y - 9 the phase function 0 may be written as

M
9 ,--( - y) + (3.24)

2

where

.1 2  .G -- 2)Y (3.25)
3 1
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and a denotes a function evaluated at x = ,y= It follows that in the limit y --

U .4 - a_ xj + _v2 J Y k(y-9)2

7 7 1 - exp 0+k Ody+ I-, (3.26)UO k7i 0 4

wit h
24(%)exP{ o Myd+ f' - Y)dy}

A 0 To . (3.27)

21 -1-1.

Here f denotes the finite part of an integral. Finally we note that Uo in the limit y -

takes the forn

rO - f(s) y - - e , (3.28)

where

4= j dy. (3.29)

Solution in the transition layer

Here the solution is essentially that found by Hall (1982a,b) so that we only summarize

briefly how it is obtained from the disturbance equations. The layer is of depth k- so we

define Y by

Y = k.L{y -

and then u and v expand as

u = Uo(Y) + k U, 1(Y) +

v k2Vo(Y) + k r(Y) +.

At zeroth order we obtain the equations

CTo + f/oa =UY 0,

V0 + x6"Uo = 0,

which have a consistent solution if

G U a Y = 2.

TIhus at zeroth order the leading order disturbance velocity field remains unknown. In fact

since y9 was chosen such that (Co2), vanishes at y = y" we must proceed to the 0(k - 1)
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approximation level to the disturbance equations before U0 and VO are found. At that

order we find that 0 0 satisfies

02U0 2U 000 X M12y2uo =0( .0
___- 2 -D + - xGnu U - MY -O= (3.30)

9y2 3 OX 3 4

In the absence of any forcing we would seek solutions of this evolution equation which have

T0 -- 0, JY[ --- oo. However, for the forced problem we replace the condition at Y = -o

by one which enables us to match with the solution in III. With that in mind we take out

the X dependence of U0 appropriate to (3.26) by writing

Uo = 4o(X, Y)e x +-7rx2

in which case u0 satisfies

0 2U0  2 =.ao M 2Y 2  2a2 U- - - 40- -U I/40 = 0.
OY 2  3 OX 4 3

We can then make the change of variable X = X - X* and take the Laplace transform

of this equation with respect to XC. If we denote the Laplace transform of UO by 0 we

find that t10 satisfies a parabolic cylinder equation. More precisely, if /o is to vanish when

Y --* oC, we require that

Uo = BU(-3M (s + I), M1Y) (3.31)

where U(a,.x) is a parabolic cylinder function. At this stage if s is chosen such that

2'a [ 1-[s + I] =-n --

3M 2

then Uo(±oo) = 0. This choice of s corresponds to the linear eigensolutions found by

Hall (1982a,b). In order to match the forced solution with that in III we note that when
Y - -cc 0 ~

r(Tu" [s + r-  + 12Y),y-(a+I)- +

Thus matching with the coreflow is achieved by choosing B = B(s) such that

L 2 1 dy + 1 0dy + f[
F(2- + J1+ [ ), k :O21

Having deterninied B we can write down the inverse transform for uO and the flow in

II is then completely known. However, the gamma function has a sequence of poles at
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the origin and on the negative real axis so that, if f has no poles or branch cuts 1O will

be found from the contribution of these poles. The least stable mode corresponds to the

pole at the origin so that for large X the solution will be dominated by that mode. As a

measure of the size of the disturbance in the layer III we can take the centreline velocity.

After some manipulation we see that the streamwise disturbance at Y = 0 for large values

of X is given by

P 4.2-f ' Cf-I - exp{Y(X" + + IX. _ }
M [dGA 2] -L& 4Wl

where

C = exp{k Ody + - Ody + -[ duIdy}.
00 0 9 0 60

It follows from the above discussion that the coupling coefficient which relates a typ-

ical vortex velocity field with the forcing function is proportional to k,4 exp{-k fg 11 -

{Gx2, ,}iItdy}. Thus, since this result is valid only in the limit k > 1 we see that small

wavelength wall roughness is an extremely inefficient generator of G6rtler vortices. The

reason why this should be so is evident from the above discussion; it is of course a direct

consequence of the fact that the vorticity induced by the roughness must diffuse over an

0(1) distance to the layer where potentially unstable vortices of this wavelength can ex-

ist. We conclude that small wavelength vortices of wavenumber proportional to GIL are

almost certainly unlikely to be generated by wall roughness. Thus it would be extremely

surprizing if small wavelength vortices could be induced experimentally by wall roughness;

however the work of Hall (1990) shows that such vortices could be induced by free stream

disturbances. We further note that, whatever the initial size of the vortex wavelength, the

fact that it is observed experimentally that the vortex wavelength is conserved as it devel-

ops in the x direction means that ultimately the small wavelength limit becomes relevant.

Now we shall relax the constrain on the size of the forced vortex wavelength and see if a

stronger coupling between the induced form and the forcing is possible.

4. Vortices of 0(1) wavelength

Here we will be primarily interested in the case when the wavelength of the forced

vortex is comparable with the boundary layer thickness. We shall concern ourselves with

both 'isolated' and 'distributed' roughness elements. For convenience we shall initially take

q = 1 which corresponds to a delta function shaped hump in the spanwise direction, later
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we choose q to correspond to other shapes. Moreover we shall also discuss the situation

when the wall forcing function varies on a fast lengthscale, for an isolated roughness element

this type of forcing provides unique initial conditions for the partial differential equations

describing the vortex. Later in this section we shall return to the case when F(x) varies

on an 0(1) lengthscale, we shall see that this situation is the most efficient in producing

linearly growing G6rtler vortices of 0(1) wavelength.

We shall first determine solutions of (2.12) appropriate to the case when F(X) varies

on a relatively fast, 0(E), lengthscale. We suppose that the forcing begins at x = 2 and

write

and then

F(x) = F*(X). (4.1)

In fact without any loss of generality we can take T = 2 so -,hat the original lengthscale L

has then been fixed in terms of the distance from the leading edge to the position where

the forcing begins. Clearly we expect a different response of the flow when 2 is before or

after the unstable regime of a vortex with wavenumber k; with T now fixed we must, of

course, investigate that possibility by varying the G6rtler number G.

In order to find the forced flow in a neighbourhood of 2 we first note that when

y -* , ,9 y/e so that convective and vertical diffusion effects are comparable in a layer

of depth e , and the wall forcing implies that u will be 0(1) there. It follows that, if u is

indeed 0(e° ) in this layer, then v will be O(fci) there. We deduce from (2.12c,d) that p

and w must then be 0(c- ), O(c 1) respectively. Thus if we put

=

then for = 0(1) we seek a solution of (2.12) which takes the form

(u,v,w,p) = (uo(X, ), f 3vo(X, ), Clwo(X,.), e-po(X, )) +

whilst

V) (e1/ 3A, f2/3g2) + ... (4.2a, b)

where A = fiy(1,0),p = 2v~Y( ,0). If we substitute the above expansion into (2.12g) we

find that fd=2 - - 0, 
(4.3)
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where s is the Laplace transform variable and Vo is the transform of vo. If vo is to be

finite at infinity then

d= = AJ A,(A s* )d + B. (4.4)

Here A and B are constants; however, the transformed continuity equation evaluated at

the wall yields

B = -sF~s). (4.5)

Here P is the transform of F' and V0 then vanishes at infinity if

A -3s'A -B. (4.6)

Thus Do can be written in the form

DO= rs{ - 3J' d}.i~~y (4.7)
0 0

The transformed streamwise velocity component is then obtained from the x-momentum

equation. We find that for large , go and 10 have the asymptotic forms

o -' 3 Ps - 13A - fw ' + .s 13A - l y 1  + . . (4 .8 a , b )

0"s 3.Fs- fw +

where w =] OAi(O)d0. Thus the flow in the wall layer induces a motion in the region
0

where y = 0(1), the appropriate expansions there are

(4.9a, b)

V = Vof- 3 +-...

and UO, VO, the transforms of Uo, Vo are found to be given by

= S- S A -w q (y ,k) + ,(4.Oa,b)

Vo = 3Fs23 A 
- ) q*(y,k)w +.

Here q" satisfies the stationary Rayleigh equation problem

U(d2 - k2 )q° - R (q1 = 0Y (4.11)

q'(0) = 1,q'(oo) = 0.
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Thus 0 and VO decay to zero exponentially as y -# oo and satisfy the matching conditions

(4.8). In each layer the transforms can be inverted and the large X form of this velocity

field can be used as an initial condition for the full linearized disturbance equations. Now

we consider the special case P = 6(X) where 6 is the delta function. It is easy to show

by inverting (4.7) and the corresponding form for uio that this choice of F" leads to a

similarity solution

llX oC x ), vo~ , lX oClx&)

In fact the above similarity solution is also the large X asymptotic form of a disturbance

velocity field induced by a forcing function F' (X) of compact support. We conclude that

the similarity solution can be used as the initial condition for the disturbance equations

in the case when vortices are induced by an isolated roughness element. We note here a

related similarity solution situation arises in linear triple deck theory, Hunt (1971), Smith

(1973), but here the absence of a streamwise pressure gradient in the G6rtler equation

causes the velocity field not to be confined to the wall layer. We will now show how the

similarity solution can be derived directly from the disturbance equations.

The Similarity Solution.

The appropriate similarity variable implied by the above discussion is

S=y(7) .•(4.12)
x

where

X - 2 (4.13)

and for ( 0(1) the disturbance velocity components u and v are found to expand as

u = -uO(() +..
X (4.14a, b)
1

v = -- vO() +'"
X 3

and at the wall we now impose the conditions

uO= u'= vo=0, (=0. (4.15)
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The functions uo and vo satisfy

,J + 3 + CUov (4.16)

subject to

u= v0 = v, = 0,( = 0,

v-* 1 + exponentially small terms, C --+ co, (4.17a, b, c)

u0j -- + exponentially small terms, C --* co.2(

In Figure (4.1) we show the functions uo and vo obtained by integrating (4.15) - (4.16)

numerically. The asymptotic forms (4.17b,c) suggest that for y = 0(1) we write

1
x3 (4.18)
1

Xa

and a solution of the y = 0(1) equations yields

= 3alUO -- q (y, k),

v+ =q(y,k),

where q" is as defined by (4.11). In Figure (4.2) we have shown the function q*(y,k)

for several values of the wavenumber k. We note that for the smaller values of k the

function q* has a maximum value away from the origin. At larger values of k the function

q" - e- V and therefore decreases monotonically as y increases from zero. We can then

combine (4.10), (4.14) to give a composite velocity field at some small value of i which can

be used as initial conditions for the full G6rtler disturbance equations. Before discussing

our numerical results obtained for such a calculation we note that the similarity solution

obtained above is unique only up to a multiplicative constant. That constant can be

evaluated for a particular wall forcing function by obtaining the large X form of the

velocity field obtained by inverting the transformed velocity field. The constant will be

0(1) and is, of course, a function of the particular function chosen. Moreover, this 'coupling'

constant gives a measure of the input disturbance velocity field for the marching problem.
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We see below that at the position where the downstream velocity field induced by this

disturbance begins to grow it has decreased in magnitude several orders of magnitude so

that the boundary layer is extremely unreceptive to this type of forcing. For that reason it

seems unnecessary for us to gives values for the 0(1) coupling constant relating the forcing

function and the similarity solution.

Now we shall report on some results we have obtained by integrating the Gartler vortex

equations with the similarity solution discussed above used to provide an initial vortex

velocity field. A composite solution was used to begin the calculations with x = .5 + Ax

for Ax small. The results presented here were obtained with Ax = .001, 1600 points in

the y direction and a vertical step length = .02. The results were of course verified by

varying these quantities in particular cases. It is of interest to note that the shape of the

profile q(y, k) for small k shown in Figure (4.2) means that the composite normal velocity

field will have a double maximum because, in Figure (4.1), the inner velocity field also

has a local maximum. We further note that for k > 1,q" - e- k " The scheme used to

march the G6rtler equations downstream is precisely that used by Hall (1983) so we give

no details of it here. As a measure of the disturbance energy we used E(x) defined by

E = (u2 + v2 )dy
0

and the local growth rate /3 E- 1 -. Following Hall (1983) the position of neutral stability

can be defined as the location where / = 0. This position will to some extent depend on

the choice of the flow property used to define 3. Our calculations for several values of

k, G showed that E decreases by several orders of magnitude before 3 becomes positive.

Effectively this means that the type of localized forcing discussed so far in this section will

generate G6rtler vortices but the vortices produced by the forcing are significantly reduced

in size before they begin to grow. However, in the absence of any other forcing, this type

of mechanism will be that responsible for the growth of vortices and so it is worth giving

some more detailed results. For several values of k with fixed values of G we computed

the position at which the induced vortex structure begins to grow. The local wavenumber

and G6rtler number were calculated at that point and used to generate a neutral wave in

the local wavenumber (k.), local G6rtler number (G) plane. These curves are plotted in

Figure (4.3) for G = 1,2, 8. It is important to realize at this stage that, since the forcing

was imposed at the same value of x in each case, the value of G used is a measure of

how close the forcing is to the unstable region. In fact there is very little variation in the
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different curves so we conclude that localized forcing generates vortices which grow at a

local G6rtler number of about 10. Here it is of interest to note that the corresponding

critical Gbrtler number appropriate to free-stream disturbances is about 6 so that free-

stream disturbances are the most dangerous. Indeed the energy loss of a vortex induced

by a free-stream disturbance is only an 0(1) fraction of its initial value so it would appear

that the localized wall roughness mechanism would be relevant only in an experimental

facility with remarkably small free-stream disturbances.

In Figures (4.4a,b) we show the downstream development of the velocity field induced

by a delta function disturbance imposed at x = .5 with k = .45, G = 8. We notice that

the initial form of the streamwise disturbance velocity component corresponds to a double

vortex velocity field because of the change of sign of u. This is possibly one of the reasons

why localized wall roughness is not an efficient generator of Gbrtler vortices. We further

note that the velocity field at the larger values of x is quite typical of the non-parallel

velocity fields obtained by Hall (1983). In order to quantify the inefficiency of localized

wall roughness at generating G6rtler vortices let us consider Figures (4.4b) in more detail.

The local boundary layer thickness for Blasius flow grows like x* so that the local G5rtler

numbers grow like xf. Thus when x increases from 0.521 to 1.401 the Gbrtler number

increases from about 8 to 40. However, even in this highly unstable regime the maximum

value of v is less than 10% of its initial value. Later in this paper we shall see that it is

possible to choose the wall forcing function, and the vortex wavelength, to produce vortices

with an almost negligible loss in amplitude.

Now we shall discuss some solutions we have obtained for the forced vortex problem

when the forcing occurs on an 0(1) streamwise lengthscale. The equations (2.12b), (2.12g)

were solved using the approach of Hall (1983) subject to the conditions (2.12e,f). Here we

shall report on calculations for the case when F(x), the forcing function, is given by

2 (4.19)

The disturbance equations for a given k were marched forward from x = 0 with zero initial

disturbance. For a given function q(k) we can invert the Fourier transform in z to give

the velocity field induced by a hump of height proportional to 4(z), the inverse of q(k).

Before discussing our results we point out that further calculations for wall shapes other

than (4.19) were carried out and give qualitatively similar results.
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In Figures (4.5a,b) we show the development of the functions u and v corresponding

to the case (4.19) with k = .45, G =- 8. We note that at smaller values of x the maximum

of u occurs at the wall. We see that subsequently the maximum value of u occurs at a

position which moves away from the wall and that the smallest maximum value occurs at

about x = 3.5 and is approximately .26. This is to be compared with a maximum value

of 4.84 of F(x). Thus we now see that for a non localized wall forcing there is a strong

coupling between the induced vortex field and the forcing. Furthermore we point out that

the ratio between the smallest maximum of u and the maximum of F is a function of k and

G. Thus by 'tuning' k and G we can in principle maximise the coupling coefficient between

the vortex field and the forcing. However such a calculation was not carried out since it

would require a great deal of computer time. Moreover the results of Figures (4.5a,b) are

sufficient for us to say that distributed forcing produces a strong coupling between the

induced flow and the forcing. Perhaps this significant result has been appreciated for some

time by experimentalists who have induced G6rtler vortices by placing strips of tape on

the wall of the test section of the experiment.

Now let us consider some results we have obtained for a wall with

1Z -.
3

4(z) = -e (4.20)
4

In order to monitor the strength of the induced vortex activity we computed u* (k, x, y) the

maximum value of u as a function of k, x and y and the wall shear stress as a function of k.

By inverting the transform in z numerically we were then able to obtain contours of uM, the

inverse of u*, and the wall shear as functions of x and z. The results obtained for the two

functions were similar so we shall concentrate on results for UM. Figures (4.6a,b,c,d) show

results obtained for uM for the obstacle defined by (4.20). The results shown correspond

to G = 4, 8, 12, 16. The size of G is a measure of how soon we expect vortices to grow; in

the absence of a unique neutral curve for the G6rtler problem we cannot be more precise

than this. In the horizontal direction x varies from 0.7 to 9 whilst in the vertical direction

z varies between -20,20. We could have demonstrated the same effect shown in Figure (4.6)

by fixing G and varying the position where the forcing was switched on. Figure (4.6) shows

clearly that immediately after the obstacle the disturbance velocity field decays initially

and is concentrated in a wake behind the obstacle. Further downstream the curvature of

the wall re-amplifies this disturbance field into G6rtler vortices which spread out within a

wedge-shaped region. The position where this amplification takes place is a function of G;
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as we would expect amplification occurs closer to the obstacle as G is increased. We note

that the onset of vortices in such wedge shaped regions has been observed expermentally by,

for example, Mangalam et al (1987). We conclude that a roughness element of lengthscale

O(L),O(Re- L) in the streamwise and spanwise directions respectively will produce an

induced vortex field with an almost negligible drop in amplitude. Moreover the onset of

vortex activity will occur in a wedge-shaped region behind the obstacle.

Further calculations were carried out for asymmetric obstacles and in Figures

(4.7a,b,c,d) we show results corresponding to Figure (4.6) but with q now given by

7r 2 Ze I"
q = (4.21)32

The conclusions given above for the symmetric case clearly also apply to (4.4), the only

difference is that the vortex activity is now symmetric about z = 0.

5. The most unstable Gbrtler vortex

We recall that the only part of the wavenumber-G6rtler number plane which can be

described in a self-consistent manner by a parallel flow theory corresponds to large values

of the G6rtler number and wavenumber. More precisely we note that, in the limit G --- 00

with k , Gf, neutral vortices described by the asymptotic structure of Hall (1982a)

exist. Moreover in the neighbourhood of the neutral state spatially amplified modes with

growth rates 0(k 2 ) occur. These modes develop in the streamwise direction in such a

way as to maximise their local growth rate. In order to isolate the fastest growing mode

at high Gbrtler number (note that this concept is not tenable at finite Gbrtler numbers)

we investigate the wavenumber spectrum close to the right hand branch of the neutral

curve. The analysis is based almost entirely on that given by Hall (1982a), so we give only

the most relevant results here; in fact the analysis of §3 essentially outlines the neutral

structure of such modes if the forcing is switched off.

Consider then the solution of (2.12a), (2.12g) in the limit G -- oo with k = 0(G4).

More precisely we write

k = AG* (5.1)

where A = 0(1) initially but later it will be informative to move further away from the

right hand branch by letting A --* 0. We seek a solution of (2 12a), (2.12g) in a layer of

depth k- 2, G- a centred on the location

y =
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The appropriate expansion of the disturbance velocity u there is

u = e '(+)-{uo( ,x) + k- u(,x) + ... } (5.2)

together with a simialr expansion for k- 2v; here VL = Ai G {y-y} and we have anticipated

a growth rate of size O(Gf). In the layer of vortex activity we write

= ~o(x) + A- La(x)G- +. (5.3)

and, following Hall (1982a), we find that the zeroth order approximation to the eigenrela-

tion is

{fUO3 + A2 } 2 -- XUO(x)F11(x). (5.4)

At this stage 9(x) has not been fixed so we must interpret (5.4) as an equation to determine

,3 = /3(A,x, 9(x)). If there is no forcing the vortex must decay exponentially as [oI o,

this provides a second condition

S[((x, A2 2 -X(x,y (x,y)]= (5.5)

The vertical structure of the vortex is then obtained in terms of parabolic cylinder functions

as was found in §3. We can then eliminate the dependence of /3 on y by combining (5.4)

and (5.5) to give /3 = 0 (A, x). We note that the vortices are responding in a quasi-parallel

manner so we could in fact scale x out of the problem by redefining A and /3. In particular

if U corresponds to a Blasius boundary layer so that R = f'(i?) f'( " ) where f is the
1 %

Blasius function then we must write /3 = / t, A X At, in which case

the simplified problem for /3t(At) is

(f'/t + At)2 (5.6a,b)

2f",3t(f'3t + At) = (f' f") ,

where the Blasius function is to be evaluated at some 77 = i/t where (5.6b) holds. In Figures

(5.1a,b) we show /3t and 77t as functions of At. The cut-off value of 77t - 1.5 corresponds to

the neutral state found by Hall (1982a). However, we see that /3t is a monotonic decreasing

function of At and in fact has a singularity when At -+ 0+. An analysis of (5.6a,b) shows

that in that limit

/t , At-2 (5.6c)
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k

so that mall wavelength vortices become progressively more unstable as k- 0. Thus

we reach the conclusion that the quasi-parallel approach of Hall (1982a) does not capture

the fastest growing mode and that the most unstable modes are probably to be found con-

centrated in a layer approaching the wall. Interestingly it is found that the fastest growing

temporal mode is captured by the asymptotic structure of Hall (1982a); unfortunately the

temporal modes are irrelevant to the receptivity problem for free-stream or wall induced

vortices.

The above discussion suggests that the most amplified wave for G > 1 is to be found

where k K< Gi. Suppose then that in order to find out the precise location of this mode we

investigate the region G > 1, k = 0(1). In fact here the vortices satisfy the inviscid form

of the vortex equations and have growth rates 0(G1). We are unaware of any previous

work on the spatial modes of the inviscid Gbrtler problem so we give slightly more detail

now than was given for the k - GI problem. The temporal inviscid G6rtler problem is

virtually idential to the inviscid Taylor problem and is set as an exercise by Drazin and

Reid (1979), and discussed by Floryan (1986). Now let us look at the structure of the

spatial inviscid Gdrtler modes and see if they include the fastest growing mode. We first

expand u in the form

u = e a{L '6 ' u (x, y) + G- Lui(x, y) + ...

together with a similar expansion for G- 12vo. The eigenvalue problem for the amplification

rate /3 is then fomnd to be

-= k-- l0.
V U(5.8)

v0 = 0, y = 0. c-.

Notice that since (5.8) corresponds to the inviscid limit we cannot satisfy the viscous

boundary condition vo = 0. For a given value of x we can solve (5.8) for the unstable

eigenvalues, corresponding to /3 > 0. In particular, we note that (5 8) Las the exact solution

vo = iexp(-ky), /32 = kX/2, (5.9a)

valid for all k.

The above exact solution is valid only if ri does not vanish in (0, oo) and corresponds

to an unstable mode if X is positive so that the wall is concave. Our primary concern in
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this paper is with the receptivity problem for a Blasius boundary layer but we shall now

make a few remarks about the relevance of the above solution to other flows.

Firstly we note that a second exact solution of the differential equation for vo is

vO = U exp(ky), Q2 = -kx/2, (5.9b)

but this solution does not satisfy the required boundary condition at infinity unless u1

vanishes there. More precisely we require that U goes to zero more quickly than does ekp

Thus the second exact solution is relevant to for example wall-jet flows and corresponds

to an unstable disturbance if X is negative so that the wall has convex curvature. Hence a

wall-jet flow is unstable in the presence of either convex or concave curvature. However the

magnitude of the growth rate depends only on the magnitude of the curvature, whilst the

form of the eigenfunction depends ony on the sign of the curvatu,'e. We further note that

the second exact solution is also valid only for flows which do not have a change of sign

in F within the flowfield. As one would anticipate the unstable modes for a flow having

a change of sign of n are more complicated; in fact they have a critical layer structure

where a vanishes and viscous effects must be retained to remove the singularity in the

disturbance velocity field. In that case the exact solutions describe the disturbance only in

the region above the critical layer furthest from the wall. We note here that the eigenvalue

of the unstable mode associated with such flows is still as given by (5.9a,b) dependent on

the sign of the curvature. A result which is even more surprising is that (5.9a,b) apply to

compressible boundary layers for which a does not change sign. Hence for a compressible

boundary layer the temperature profile has no direct effect on the growth rate of what is

in fact the most unstable inviscid mode. In fact the exact solution is only the first mode in

an infinite hierarchy of modes which yield unstable eigenvalues if U; is anywhere positive.

However, we were unable to determine exact solutions of (5.8) for these higher modes.

In Figure (5.2) we present the first two unstable eigenvalues of (5.8); we have restricted

attention to the Blasius flow and have, for convenience, chosen x = 1. From (5.8) we

expect that for small k the higher modes have unstable eigenvalues 3 - k. This prediction

is born out by the results shown in Figure (5.2) for the second mode.

We see from Figure (5.2) that there is not a fastest growing mode predicted by our

calculations since for the two modes calculated 0 tends to infinity when k -4 oo. In fact

it is crucial to find this largc k structure since it provides the vital clue in the search

for the most unstable mode. The calculations which we performed in order to construct
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Figure (5.2) showed that the eigenfunction of any mode becomes concentrated at the wall
a

as k -+ 00. This suggests that a new structure will emerge from (5.8) when - , k in

which case there is a wall layer of depth k- 1 near y = 0. Since 2 ,-, y for y small it is clear

that such a structure can exist only if i ,k 0. We therefore write

V= ky, )3=3ftki

and the reduced problem for 3t is then

/ 3 2 2  
}- XVO

_-0t"{ 1' 0 v0}ov

v0=0, =0, oo.

This is a form of Whittakers equation

1 K (l- 2)l

W" + [-1 + K + 2 W =0 (5.10)
4 z Z

The solutions of this equation using the notation of Abramowitz and Stegun (1965) are

MK,. (z), WK,, (z) and can be expressed in terms of Kummer functions. The above equation
I 2,3t 2

reduces to (5.10) if y = -2 and t _

x
We can infer from the small and large z forms of M, W given by Abramowitz and

Stegun that if we are restricted to p = ± then the only values of K which enable W to

vanish at z = 0, oo are K = 1,2, 3.... Thus the unstable values of Ot are given by

I Xf Xf

Note here that the first eigenvalue is the exact solution valid for all k. Thus in the high

wavenumber limit the inviscid modes become progressively more unstable with growth rate

G-2k .On the other hand we see that the viscous right hand branch modes become more

unstable as k decreases, actually from (5.1), (5.2) and (5.6c) we see that in that regime the

growth rate is - G'2( k_1.)-2 . This suggests that the viscous and inviscid modes in these

limiting cases will merge when k '- G- since they will both then predict growth orders

GI. Moreover, both limiting forms then suggest that the vortices will then be confined

to a layer of thickness Ga at the wall. Thus in this 'overlap regime' we write

k =Gt

P= ky,
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and expand u in the form

u a f '(,)d, {U 0 + G- U1 +

together with a similar expansion for G vo. Near the wall the basic flow U ,y 1 (x)y and

the function pair (uo, vo) is found to satisfy

d 2  1} u0{dq 2  X3 2 0

d 2  T 1}v0 (5.11)

dp 2  X3 X3

uo=vo=vb=0, 1=O0,00.

The limiting inviscid form is then obtained from (5.11) by taking the further limit X - 0

in (5.11), whilst the limiting form (5.6) is recovered by allowing X --+ oo in (5.11). Thus

without further calculation we know that the eigenvalues of (5.11) are such that

,0, ' , X- 2 ,  X- . (5.12)

so that at some intermediate value of X a most amplified case will exist. In order to confirm

this we solved (5.11) numerically to obtain the first few unstable eigenvalues as functions

of X. For computational purposes it is convenient to eliminate the parameters yi, X from

(5.11) by writing

X = (x/i 2 )fA, /3 = (X3Y)-/3, uo = Aio, vo = (XA2 )1.o (5.13a, b,c,d)

in which case (5.11) may be rewritten as
d %jd 2  1P fl0

{dq2 53 - q d2 3'

d2  q DO (5.14)

i0= iO = 5 = 0,T = 0, oo.

Thus (5.14) now constitutes aIL eigenvalue problem / = /(A) and the first two unstable

eigenvalues are shown in Figure (5.3); we see that (5.11) is confirmed and that each unstable

mode has its growth rate maximised at a finite value of A. Our calculations showed that

the most unstable mode corresponds to A = A, = .476,1 = .312. Actually, in addition to
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the modes shown there is an infinite sequence of less unstable modes with a similar / -

structure moved progressively closer to the A axis.

Thus the above calculation has shown that the most unstable linear G6rtler vortex at

high G6rtler numbers is viscous but with wavenumber - Ga rather than , Gl as would be

appropriate to the unstable modes close to the neutral curve. A further significant result is

that the most unstable vortices are close to the wall; this leads us to expect that, when the

appropriate receptivity problem for these modes is discussed, 0(1) 'coupling coefficients' are

possible. This problem is addressed in the next section; to close this section we make a few

remarks about the nature of the eigenfunctions associated with the most dangerous mode

we have isolated. The jio, vo velocity fields of the most dangerous mode are shown in Figure

(5.4). We see that they have the characteristic shape of vortices measured experimentally.

In fact Figure (5.5) shows a comparison of this most unstable eigenfunction with that

measured by Swearingen and Blackwelder (1987). Also shown are the eigenfunctions from

Smith's (1955) parallel flow theory and a nonparallel solution obtained by Hall (1983). We

see that the predicted velocity field is close to that measured experimentally.

Now let us consider the evolution of a fixed wavelength vortex as it develops in the x

direction. We note that it is observed experimentally that Gbrtler vortices develop such

that their wavelength is conserved so A = constant describes the experimental situation.

For definiteness we suppose that the basic flow is a Blasius boundary layer so that

-_ .4696 _ _

and further that the wall shape is such that.

X , XN ,  with N fixed.

We can determine 0( ) for such a situation by noting that

with

X N

Experimentally it is observed that when a vortex develops downstream it conserves its

wavelength. Thus for a given fixed value of N we compute A A(z--),- at the

location x and read off the corresponding value of from Figure (5.3). The growth rate
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/3 at that location is then computed from/3 = ( '
3 )t/3. It follows that the maximum

possible growth rate at any x will increase with x only if N > g. However we note that,

in the special case N = 1, A is a constant so that the most unstable mode occurs at the

same value of A for all x and has magnitude increasing like x . This particular choice of

N = 1 is significant for the asymptotic structure we have developed because in this case

the local G6rtler number varies like the fifth power of the local wavenumber so that only

the magnitude of the maximum growth rate can depend on x. We note in passing that

N - 1 plays a similar role for neutral vortices corresponding to the right hand branch of

the neutral curve.

In fact if we do not take N = 1 we see that A either decreases or increases with x

depending on whether N > 1 or N < 1. This means that for a given value of A the growth

rate /3(x) will have a maximum value at some value of x if N j 1. Thus if N # 1 there is

a downstream location where a vortex of given wavelength is most amplified. In Figures

(5.6a,b,c) we show /3 as a function of A and x for the cases N = 0, , 1. It should be noted

that the development of a given vortex can be found from these figures by taking a slice

through that figure parallel to the /3 - x plane.

6. The receptivity problem for the most unstable G6rtler mode

We have seen above that the crucial property of the most unstable vortex is that it

is confined to a region of depth G-f near the wall. Suppose then that the wall forcing

function F(x) is of the form

F=0, x < , (6.1)
f P .f(JG"[x - x]), x > .

Here we have introduced the factor J = (x p)I" for convenience. Thus we are now allowing

the wall forcing function to vary on a length scale comparable to the length scale over which

the most unstable streamwise vortex develops. If we then define i by

5c = JG£(x - 2

and write
u = u0(i,4' + Gu(, I) +...,(62T) (6.2)

(xpG)- fpv = vo(i, 4I) + G- fvj(, 41) +

30



then it follows directly from (5.14) that uo, vo satisfy

{ 2 1 & 1
0T 2 i3 X AV
02 1 0-1}{ 02 1 (6.3a, b)

-3 5= &p2 A3

Here A, %P are as defined in the previous section. The forced problem then satisfies the

conditions
uO= F(), vo=, =(6.4a, b)

uO,VO -* 0, 1P -+ 00.

In fact we could modify the boundary condition as 'I --+ oo in order to allow for the

possibility that vortices are induced by free-stream disturbances. However, since the dis-

turbance in the free-stream must communicate with the wall layer over an 0(1) distance on

a G-- lengthscale through a WKB structure similar to that of §3 the coupling coefficient

for such a disturbance would be (e- 0 ) and so this type of excitation will be weak com-

pared to that discussed here. Alternatively we could investigate the effect of wall suction

by setting u0 = 0 at the wall and applying a nonzero boundary condition on vo there. The

forced problem (6.3)-(6.4) is most easily solved by again taking a Laplace transform with

respect to the streamwise co-ordinate. If we denote the transforms of uO, vo, and F by

1o, V0 and F, and assume that there is no incoming vortex field then we find that uO, vo

satisfy (5.14) with /3 replaced by the transform variable s and the boundary conditions

unchanged except for replacing the condition uO = 0, %F = 0 by 1o = F(s), I' = 0. We can

write the solution of this problem in the form

(u' VO) = P(s)(u (s,' T), v (s, %P)) (6.5)

where (u*, v*) satisfies the same problem as (uio, VO) but with F = 1. It is obvious at this

stage that u ° and v" will have singularities in the complex plane where s = /3j, the jth

eigenvalue of (5.14) for j = 1,2 .... Moreover when we invert the transformed velocity

field these singularities will in effect fix the form of the induced vortex field. It is therefore

essential that we should find the form of these singularities. We can obtain the form of

(u, v') near the singularity by expanding (u', v*) in the form

(U. _ (u v-6) + (u, v) +.... (6.6)
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If the above expansions are substituted into the differential system for (u', v) and s is

replaced by

8= '3j + (s - 3,) (6.7)

and terms of order (s - I)- 1 are equated in that system we obtain

(u 0,v6) = A (uo (IA ,Y),vo;(fA,Y)) (6.8)

where Aj is a constant and (uoi, vo ) is the eigenfunction of (5.14) appropriate to 3 = /3-.

At next order in the expansion procedure we find an inhomogeneous form of (5.14) to

determine (ul,v*). If we define (b,fj) to be the function pair adjoint to (uo,,vo,) then

(b , f, ) satisfies
d 2 b i b b ;

- - b, - b3 = fj

(2 d2~ q j f b, (6.9)(dj2 dj 2  3 - 2'

bi=f;=f;,=0, %P'=o,oo.

and the solvability condition for the system for (u*, vj) yields

Pb;(0) (6.10)
foo{I1("-1)A+ .bjd

For convenience we assume at this stage that u0j has been normalized to have a maximum

value of unity so that A is a measure of the transformed disturbance amplitude. It

remains now for us to invert the transformed velocity field; in order to do so we must

be more precise about the function P. If we are interested in the effect of an isolated

roughness element we can take F to be a function of compact support and then F cannot

have any singularities in s, > 0. If we wish to consider the effect of distributed roughness

this restriction must be relaxed and we merely assume that P exists. In the first instance

we assume that F has compact support then, since the only singularities of (5.10) in s' > 0

correspond to the simple poles discussed above the contour of integration for the inverse

transform is chosen parallel to the imaginary axis to the right of s = /1. The contour is

then closed in the left hand half place Real(s) < /1 and the only contributions to this

integral come from the poles s = I3 . Thus we obtain

00

(uo, vo) E (uZj, 0j)eP,0AjP( j) (6.11)
j=3
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so that for a given value of A the effective coefficient is Aj F(3,) for the amplitude of the

mode.

However, it is clear that for large x (6.11) will be dominated by the fastest growing

mode which of course corresponds to j = 1. Thus when the Fourier transform is inverted

to give the effect of a particular Z structure for the wall forcing by deforming the contour

appropriately we will see that far downstream a vortex is set kip with growth rate 31 and

with the wavelength A corresponding to 1. At this stage we could repeat the discussion of

§4 and determine the effect of a three-dimensional obstacle on the onset of Gbrtler vortices.

In fact the development of vortices in this region is essentially identical to that of §4. Thus

behind a three-dimensional obstacle there will be a wake where initially the effect of the

obstacle is concentrated; further downstream this wake will expand into a wedge-shaped

region of vortex activity with a vortex wavelength corresponding to the most unstable

mode of (5.10). The above discussion has assumed that F has compact support; if that is

not the case then some further discussion is required. In fact if P does not have a pole to

the right of s = I 1 then the large x downstream behaviour of the vortex flow will be as

described above, since the associated velocity field will still be dominated by the pole at

s= 3i. However, if F has a pole to the right of s =/31 at, say, s = s' then F increases like

e' for large x and our original assumption that the wall perturbation is small becomes

invalid. Thus the only situations described by our theory have the inverted velocity field

dominated by the fastest growing mode of (5.10). Hence the question of whether the

roughness element is isolated or distributed is not resolved for the fastest growing mode in

either case. In either case FP(I) will be an 0(1) number so that each type of forcing leads

to an 0(1) coupling coefficient between the surface perturbation and the induced vortex

field. In Figure (6.1) we present a plot of Al versus A; we can see from this plot that Al

attains its maximum at a finite value of A. However, there is no reason to associate this

value of \ at which the maximum of A1 occurs with that found in §5 for the most unstable

vortex.

Finally in this situation we make a few remarks about more similarities between the

solutions of (6.3) and those obtained in §4. Firstly we note that (6.3) has a small t

similarity solution essentially identical to that found in §4. Again the similarity variable

is A- and for T = 0(;) it is easy to show that the solution expands as

1 1.
UO= _7'bO(() + ; vo= 10c

X X
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with (uo, vo) given from a rescaled form of (4.3). Above this layer, where %P = 0(1), there is

a region with uo - -4-o(y),vo -, --Lo(y) again; in fact it turns out that Do - e- kv there

so that, if the z structure of the wall perturbation is concentrated near z = 0 and modelled

by a delta function, above the i layer the normal perturbation velocity in x, y, z spacez

is proportional to 5i- 1 2 2. Note that in the wall layer the spanwise structure of the

disturbance remains concentrated in a delta function form. However the similarity formz
y2 + z2 shows clearly the 'wake'-structure induced by a localized disturbance. This is

precisely the situation observed in the numerical investigations of §4.

7. Conclusions

We shall, in the first place, draw some conclusions about the stimulation of Gbrtler

vortices by wall roughness with spanwise wavelength comparable to the boundary layer

thickness. The key point in this situation is that G6rtler vortices develop in a non-parallel

manner; there is no such thing as a unique growth rate for a growing vortex or a unique

neutral curve for a vortex which is not growing or decaying. Necessarily, this means that

the receptivity problem for vortices of 0(1) wavelength must be dominated by non-parallel

effects. In §4 we discussed the 0(1) wavelength receptivity problem for roughness elements

varying in the streamwise direction on a lengthscale comparable, and shorter than, the

body scale. However in the latter case our analysis fails if the roughness varies in the

streamwise direction on the boundary layer lengthscale. We saw in §4 that, for a forcing

function of the form (4.1) with F being a function with compact support, the effect of

the forcing is to generate a similarity solution of the linear Gbrtler vortex equations in the

neighbourhood of where the forcing occurs. By integrating the disturbance equations with

the similarity solution used to generate the initial vortex field we were able to determine

'the' neutral curve appropriate to an isolated roughness element inserted into the boundary

layer. Furthermore we found that this type of forcing is a relatively inefficient generator

of Gortler vortices because the vortex amplitude at the position where it begins to grow

is an order of magnitude smaller than the amplitude of the forcing.

Where the forcing varies on the body lengthscale, the coupling coefficient is 0(1). In

this case we found that behind a roughness element localized in the spanwise direction the

disturbance initially decayed. Further downstream the disturbance was found to be 're-

amplified' by centrifugal effects and a wedge of vortex activity generated. This pattern of

vortex activity has been observed experimentally by, for example, Mangalam et al (1987).
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In §3, §5 and §6 we concentrated on the case where the Gbrtler number is large and

the vortex wavelength is small. The investigation of §4 showed conclusively that small

wavelength vortices associated with the right hand branch of the neutral curve suffer

an exponential drop in amplitude because the region where they are unstable is an 0(1)

distance from the region where the forcing occurs. Almost certainly this means that it is

unlikely that small wavelength G6rtler vortices could be produced by wall roughness in an

experiment.

However, there is a situation when small wavelength G6rtler vortices will be preferen-

tially induced by wall roughness. We refer to the region discussed in §5, 6, where the vortex

wavelength associated with the forcing is O(G-). It is interesting to note that the fastest

growing G6rtler vortex described in §6 had not been identified by previous authors because

it had been assumed that such a mode would have to be associated with disturbances close

to the right-hand branch of the neutral curve. In fact, the fastest growing mode occurs

in an overlap region between inviscid modes of wavenumber 0(1) and right-hand branch

modes with wavenumber 0(G'). The eigenvalue problem (5.11), which determines the

growth rate of the fastest -,_jwing mode, is, in fact, clearly related to the Taylor vortex

problem for the flow bto veen concentric cylinders with the outer cylinder at rest and the

inner cylinder rotating. In that case 3 corresponds to the azimuthal amplification rate of

a steady, small wavelength Taylor vortex trapped near the outer cylinder. However (5.11)

has no neuatral modes so that, for the Taylor problem, where the disturbance must be

single-valued in the azimuthal direction, this type of disturbance is not physically relevant.

However, in other situations where no such constraint is appropriate (5.11) determines the

fastest growing spatial mode of instability. Thus the eigenvalue problem (5.11) is directly

relevant to the Taylor-Dean instability in pressure gradient driven flows in curved geome-

tries, whilst a generalization of (5.11) involving a further second order equation is relevant

to the compressible G~rtler problem with and without curvature. We see from (5.11) that

the only dependence of the amplification rate on the mean state is through the wall shear

Mi, and in fact j3 - M L. Thus the stabilizing effects of, for example, wall suction can be

inferred directly from their effect on the wall shear.

Finally, we turn to the results we obtained in §6 for the receptivity problem associated

with the fastest growing mode. Our main result in that section was that Al, the coupling

co-efficient of the fastest mode, is an 0(1) quantity. This means that wall roughness at high

Gbrtler numbers will stimulate vortices of wavenumber GI close to the position where the
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roughness begins. If the roughness is localized in the spanwise direction the vortex activity

again begins in a wedge behind the obstacle. It remains an open question whether finite

amplitude effects will significantly influence the structures we have discussed in this paper.
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Figure (3.1) The different regions in the high wavenumber limit receptivity problem.
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Figure (4.1) The similarity functions uo((0, vo(() determined by solving (4.16), (4.17).
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Figure (4.2) The solution of (4. 11) tor k .2, .3..,1.
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Figure (4.3) The neu'ral curves corresponding to an initial disturbance constructed from

the similarity solution.
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Figure (4.4a) The downstream development of the velocity field induced by the similarity

solution for the case k = .45, G = S. The disturbance corresponds to a delta function forc-

ing function at x = .5 and is shown atx =.521,.541,.561,.581,.601,1.401,2.201,3.01,3.801.
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Figure (4.4b) The downstream development of the velocity field induced by the similarity

solution for the case k = .45, G = 8. The disturbance corresponds to a delta function forc-

ing function at x = .5 and is shown at x = .521,.541, .561,.581, .601, 1.401,2.201,3.001,3.801.
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Figure (4.5a) The developmient of u(x, y, k) corresponding to the forcing function (4.19)

NN1 i k = .45, G 8. The profiles shown correspond to x .9, 1.3, ,7.3.
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I'igiiie (4.51) The dlevelopmnent of v(x, y, k) corresponding to the forcing function (4.19)

\vltlI k .43, G 8. The profiles shown correspond to x .9,1.3,..., 7.3.
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